师资队伍

教授

首页 > 师资队伍 > 教授 > 正文


  • 姓名:郑强

  • 职称:教授

  • 所在院系:计算机系

  • 最后学位:博士

  • 最后学历:研究生

  • 最后毕业院校:山东大学

  • 研究方向:数字影像与智能计算

  • 联系方式:zhengqiang@ytu.edu.cn

个人简介:      

烟台大学计算机与控制工程学院教授,美国宾夕法尼亚大学医学院博士后,费城儿童医院博士后,烟台大学智慧医疗产业技术研究院主任,烟台大学计算机与控制工程学院“数字影像与智能计算”团队负责人,致力于人工智能与医疗领域的学科交叉研究。研究方向包括医学图像计算、机器学习、深度学习、模式识别等。欢迎对AI医疗感兴趣的教师、医生和同学加盟!

快速链接:烟台大学智慧医疗产业技术研究院 https://ai.ytu.edu.cn/


以下两个视频让您快速了解我的部分研究内容:

MICS2021学术报告:医学图像分析:科研到临床,临床到产品

哔哩哔哩链接: https://www.bilibili.com/video/BV1wf4y187NL?spm_id_from=333.337.search-card.all.click&vd_source=6169a5a55875cb797c5f19a91f327db7


ICDIP 2022 学术报告:Medical Image Analysis --- Make A Further Step

哔哩哔哩链接:https://www.bilibili.com/video/BV1ES4y1B7AY?spm_id_from=333.337.search-card.all.click&vd_source=6169a5a55875cb797c5f19a91f327db7


项目情况:

主持国家自然科学青年基金1项、山东省自然科学基金1项、中国博士后基金1项、中国博士后国际交流计划项目1项。参与国家自然科学基金2项,山东省自然科学基金2项、山东省高校科研计划重点项目1项、烟台市重点研发计划1项


国外媒体报道:

郑强老师研究成果曾被多家美国媒体报道。比如Radiology期刊副主编,来自阿姆斯特丹大学的Rick van Rijn教授,在Radiology期刊发表专门评论文章“Three Reasons Why Artificial Intelligence Might Be the Radiologist’s Best Friend”,对于申请人开展的工作给予极大肯定,并指出AI can free up a lot of time for radiologists to spend on value-adding duties that only humans can perform。此外,申请人的诸多论文还被HealthImagingAuntMinnieCardiovascular WeekHealth & Medicine WeekBiotech Week、梅斯医学等多家媒体报道。                               

主讲课程:

数字逻辑与数字系统、电路与模拟电子技术、数值分析与MATLAB、专业文献检索与阅读

期刊论文:

[1] Yiyu Zhang, Hongming Li, Qiang Zheng*, “A comprehensive characterization of hippocampal feature ensemble serves as individualized brain signature for Alzheimer’s disease: deep learning analysis in 3238 participants worldwide”, European Radiology, online ahead of print, 2023. (IF=7.034)

[2] Qiang Zheng, Bin Liu, Yan Gao, Lijun Bai, Yu Cheng, Honglun Li, “HGM-cNet: Integrating hippocampal gray matter probability map into a cascaded deep learning framework improves hippocampus segmentation”, European Journal of Radiology, online ahead of print, 2023. (IF=4.531)

[3] Xiaolin Jiang, Shuai Wang, Qiang Zheng*, “Deep-learning measurement of intracerebral haemorrhage with mixed precision training: a coarse-to-fine study”, Clinical Radiology, 78(4): e328-e335, 2023. (IF=3.389)

[4] Qiang Zheng, Bin Liu, Xiangrong Tong, Jungang Liu, Jian Wang, Lin Zhang, “Automated measurement of leg length discrepancy from infancy to adolescence based on cascaded LLDNet and comprehensive assessment”, Quantitative Imaging in Medicine and Surgery, 13(2): 852, 2023. (IF=4.63)

[5] Qiang Zheng, Yiyu Zhang, Honglun Li, Xangrong Tong, Minhui Ouyang, “How segmentation methods affect hippocampal radiomic feature accuracy in Alzheimer’s disease analysis?” European Radiology, 2022 (IF=7.034)

[6] Yuanyuan Liu, Cunying Cui, Yannan Li, Ying Wang, Yanbin Hu, Minfu Bai, Danqing Huang, Qiang Zheng*, Lin Liu*, “Predictive value of the echocardiographic noninvasive myocardial work index for left ventricular reverse remodeling in patients with multivessel coronary artery disease after percutaneous coronary intervention,” Quantitative Imaging in Medicine and Surgery, 2022 (IF=4.63)

[7] Kun Zhao, Qiang Zheng, Martin Dyrba, Timothy Rittman, Ang Li, Tongtong Che, Pindong Chen, Yuqing Sun, Xiaopeng Kang, Qiongling Li, Bing Liu, Yong Liu, Shuyu Li, “Regional radiomics similarity networks reveal distinct subtypes and abnormality patterns in mild cognitive impairment,” Advanced Science, 2022 (IF=17.521)

[8] Yanan Li, Qiang Zheng*, Cunying Cui, Yuanyuan Liu, Yanbin Hu, Danqing Huang, Ying Wang, Jun Liu, Lin Liu*, “Application value of myocardial work technology by non-invasive echocardiography in evaluating left ventricular function in patients with chronic heart failure,” Quantitative Imaging in Medicine and Surgery, 2022 (IF=4.63)

[9] Qiang Zheng, Zhipu Ge, Han Du, Gang Li, “Age estimation based on 3D pulp chamber segmentation of first molars from cone-beam computed tomography by deep learning,” International Journal of Legal Medicine, 2021. (法医TOP期刊, IF=2.791)

[10] Qiang Zheng, C.W. Freeman, M. Hwang, “Sex-related differences in arterial spin-labelled perfusion of metabolically active brain structures in neonatal hypoxic–ischaemic encephalopathy,” Clinical Radiology, 2021. (IF=3.389)

[11] Qiang Zheng, Maxim Itkin, Yong Fan, “Quantification of thoracic lymphatic flow patterns using dynamic contrast-enhanced MR Lymphangiography,” Radiology, vol. 296, no. 1, pp.202-207, Apr 2020. (影像学TOP期刊,IF=29.146)

[12] Qiang Zheng, Sphoorti Shellikeri, Hao Huang, Misun Hwang, Raymond W Sze, “Deep learning measurement of leg length discrepancy in children based on radiographs,” Radiology, vol. 296, no.1, pp.152-158, Apr 2020. (影像学TOP期刊,IF=29.146)

[13] Qiang Zheng, Juan Sebastian Martin-Saavedra, Sandra Saade-Lemus, Arastoo Vossough, Giulio Zuccoli, Fabrício Guimarães Gonçalves, Colbey W Freeman, Minhui Ouyang, Varun Singh, Michael A Padula, Sara B Demauro, John Flibotte, Eric C Eichenwald, John A Detre, Raymond Wang Sze, Hao Huang, Misun Hwang, “Cerebral Pulsed Arterial Spin Labeling Perfusion Weighted Imaging Predicts Language and Motor Outcomes in Neonatal Hypoxic-Ischemic Encephalopathy,” Frontiers in Pediatrics, vol. 8, pp. 576489-576489, Sep 2020. (IF=3.569)

[14] Qiang Zheng, C.W. Freeman, M. Hwang, Radiologic-pathologic evidence of brain injury: Hypoperfusion in the Papez circuit results in poor neurodevelopmental outcomes in neonatal hypoxic-ischemic encephalopathy, Childs Nervous System, vol.37, no. 1, pp. 63-68, Jul 2020. (IF=1.532)

[15] Qiang Zheng, Susan Furth, Gregory Tasian, Yong Fan, "Computer aided diagnosis of congenital abnormalities of the kidney and urinary tract in children based on ultrasound imaging data by integrating texture image features and deep transfer learning image features", Journal of Pediatric Urology, vol.15, no.1, pp.e1-e7, Feb 2019. (IF=1.921)

[16] Qiang Zheng, Yihong Wu, Yong Fan, "Integrating semi-supervised and supervised learning methods for label fusion in multi-atlas based image segmentation", Frontiers in Neuroinformatics, vol. 12, no. 69, pp. 1-11, Oct 2018. (IF=3.739)

[17] Qiang Zheng, Honglun Li, Baode Fan, Shuanhu Wu, Jindong Xu, “Integrating support vector machine and graph cuts for medical image segmentation,” Journal of Visual Communication and Image Representation, vol. 55, pp. 157-165, Aug 2018. (IF=2.887)

[18] Qiang Zheng, Steven Warner, Gregory Tasian, Yong Fan*, "A dynamic graph-cuts method with integrated multiple feature maps for segmenting kidneys in ultrasound images," Academic Radiology, vol.25, no.9, pp.1136-1145, Sep 2018. (IF=5.482)

[19] Henry Cheng, Qiang Zheng, Xiaofeng Zhu, Amanda M. Smith, Yiwen Qian, Rupal O’Quinn, Frank Silvestry, Yuchi Han, Marielle Scherrer-Crosbie, Victor Ferrari, Kevin Duffy, Dinesh Jagasia, Christos Davatzikos, Yong Fan, and Bonnie Ky, "The use of machine learning for predict Doxorubicin cardiotoxicity, " vol.71, no. 11, Journal of the American College of Cardiology, 2018. (IF=27.203)

[20] Qiang Zheng*, Honglun Li, Baode Fan, Shuanhu Wu, Jindong Xu, Zhulou Cao, “Modified localized multiplicative graph cuts based active contour model for object segmentation based on dynamic narrow band scheme,” Biomedical Signal Processing and Control, vol. 33, pp. 119-131, Mar 2017. (IF=5.076)


部分会议报告:

[1] Qiang Zheng, Chenying Zhao, Minhui Ouyang, Arastoo Vossough, Giulio Zuccoli, Raymond Wang Sze, Hao Huang, Misun Hwang, “Decreased fractional anisotropy in the diffusion tensor imaging of neonatal hypoxic-ischemic encephalopathy with normal conventional MRI,” International Society for Magnetic Resonance in Medicine (ISMRM) 2020 Annual meeting, April 18-23, Poster. (Abstract)

[2] Qiang Zheng, Angela N. Viaene, Colbey W. Freeman, Misun Hwang, “Radiologic-pathologic evidence of brain injury: Hypoperfusion in the Papez circuit results in poor neurodevelopmental outcomes in neonatal hypoxic ischemic encephalopathy,” The Society for Pediatric Radiology (SPR) 2020 Annual meeting, May 9-15, Oral. (Abstract)

[3] Qiang Zheng, Shellikeri, Sphoorti, Misun Hwang, Raymond Sze, Automatic Measurement of Leg Length Discrepancies in Pediatric Patients on X-Ray Imaging using Deep Learning, RSNA 2019, Oral. (Abstract)

[4] Qiang Zheng, Minhui Ouyang, Juan Sebastian Martin-Saavedra, Sandra Saade-Lemus, Qinlin Yu, Raymond Wang Sze, John Flibotte, John Detre, Hao Huang, Misun Hwang, "Increased brain perfusion in neonatal hypoxic ischemic injury with negative reading of DWI, T1/T2-weighted images: Implications of perfusion MRI for reperfusion response monitoring and prognostication," International Society for Magnetic Resonance in Medicine (ISMRM) 2019 Annual meeting, May 11-16, Oral power pitch presentation. (Abstract)

[5] Qiang Zheng, Juan S. Martin-Saavedra, Minhui Ouyang, Sandra Saade-Lemus, Qinlin Yu, Hao Huang, Raymond Sze, Misun Hwang, "Quantitative ASL perfusion method for detection of neonatal hypoxic ischemic injury as reference standard for developing contrast-enhanced ultrasound," The Society of Pediatric Radiology (SPR) 2019 Annual Meeting, Apr 30-May 4, Oral. (Abstract)

[6] Qiang Zheng, Juan S. Martin-Saavedra, Minhui Ouyang, Sandra Saade-Lemus, Qinlin Yu, Hao Huang, Raymond Sze, Misun Hwang, "Region-specific perfusion alterations in neonatal hypoxic ischemic injury evaluated with arterial spin labeling MRI," The Society of Pediatric Radiology (SPR) 2019 Annual Meeting, Apr 30-May 4, Oral. (Abstract)

[7] Qiang Zheng, Yong Fan*, "Integrating semi-supervised label propagation and random forests for multi-atlas based hippocampus segmentation," IEEE 15th International Symposium on Biomedical Imaging (ISBI), pp. 154-157, Washington DC, USA, Apr 4-7, 2018. (Full paper)

[8] Qiang Zheng, Gregory Tasian, Yong Fan*, "Transfer learning for diagnosis of congenital abnormalities of the kidney and urinary tract in children based on ultrasound imaging," IEEE 15th International Symposium on Biomedical Imaging (ISBI), pp. 1487-1490, Washington DC, USA, Apr 4-7, 2018. (Full paper)



主要教学成果:


指导研究生情况:

  欢迎对AI医疗感兴趣的同学加盟!





联系我们

地址:中国山东省烟台市莱山区清泉路30号

邮政编码:264005 电话: 0535-6902601

E-mail: jsjb@ytu.edu.cn